jueves, 26 de abril de 2012

Técnicas de sombreado clásicas y avanzadas


Clásicas: Iluminación local.

Luces que no son extensas, como las reales, sino inextensas, puntuales. Y, por añadidura, se relacionan con los objetos como mónadas aisladas, sin tener en cuenta la interacción entre ellos. Esto explica lo artificioso de muchas de las técnicas que se describirán más adelante y que buscan compensar estas limitaciones.

Las insuficiencias de los métodos de iluminación local se han superado en parte por medio de sistemas de iluminación global que permiten tomar en cuenta la interacción entre objetos. Las dos técnicas principales son el trazado de rayos (ray tracing) y la radiosidad (radiosity)





Calculos de iluminación por vértices

Para poder aplicar iluminación necesitamos asociar a cada vértice de nuestro objeto un vector normal asociado. Cuando tenemos la normal calculada tenemos que normalizarla, o sea, dividir ese vector por su propio modulo para que sea unitario, pero también podemos hacer que se encargue la OpengGl activando la normalización,

glEnable GL_NORMALIZE

o desactivarla con,

glDisable GL_NORMALIZE

el usar GL_NORMALIZE dependerá de nuestra aplicación ya que forzando a que sea OpenGl que las utilice se ralentiza ya que le estamos hacer mas cálculos de los que debe.
Para definir las normales en opengl utilizaremos la función glNormal3f(X,Y,Z) por ejemplo para definir una cara con 4 vértices la definiremos de la siguiente manera

GlBegin GL_QUADS

glNormal3f nX,nY,nZ
glvertex3f x,y,z
glvertex3f x,y,z
glvertex3f x,y,z
glvertex3f x,y,z
glEnd

Es decir, cada vez que queremos definir una normal a un vértice usamos glNormal y el vértice/s que siguen se asocian a esta normal.

La luz de tipo SMOOTH el polígono que definamos tendrá un color definido par cada vértice, asociando las normales a los vértices OpenGL puede hacer los cálculos de los colores a cada uno del vértice y después hace una interpolación de colores con este tipo de luz se acerca bastante al realismo pero a un la podemos mejorar.

Posterior relleno de triangulos

Rellenado de los triángulos (rastering). Para ello se realizan varias fases de procesamiento por Pixel. Comprobar si cada nuevo pixel es visible o no (comprobación de profundidad).
Interpolación lineal del color para el nuevo pixel (método de Gouraud).

Si existe una textura definida o transparencia, efectuar la modificación de color correspondiente.

Se trata de la última fase, en ocasiones la más costosa, del proceso, por lo que es la primera que se suele integrar en el hardware gráfico. En esta etapa se trata de asignar colores a los pixels correspondientes al interior de cada triángulo proyectado que cae dentro del área de visualización. Los colores asignados deben calcularse por el método de Gouraud, interpolando linealmente entre los colores de los tres vértices.

Renderizado en Tiempo real

La idea fundamental del procesado en tiempo real es que todos los objetos deben ser descompuestos en polígonos. Estos polígonos serán descompuestos a su vez en triángulos. Cada triángulo será proyectado sobre la ventana bidimensional y rellenado con los colores adecuados para reflejar los efectos de la iluminación, texturas, etc. Una vez se han generado los triángulos, en la pipeline existen dos partes claramente diferenciadas: una primera etapa operaciones realizadas sobre cada uno de los vértices, y después de que éstos se proyecten sobre la ventana, entonces comienza una segunda fase de cálculos realizados para cada pixel cubierto por los triángulos.

Realistas: Iluminación global

Son sencillos y rápidos pero proporcionan imágenes muy simples, que no representan adecuadamente el modo en que la luz ilumina los objetos y los espacios. Esto no quiere decir que no sean útiles para un gran número de casos, y es muy importante calibrar adecuadamente que es lo que se necesita, pues puede muy bien ocurrir que un cálculo local proporcione imágenes relativamente esquemáticas pero más adecuadas para la representación de un proyecto.

Los métodos principales que existen en la actualidad pueden considerarse como desarrollos, con diferentes variantes, de los dos métodos principales que surgieron en la década de los 1980, ray tracing (introducido por T.Whitted en 1980) y radiosity (hacia 1984 por varios autores). Una base téorica más firme para los algoritmos y métodos de GI (Global Illumination), vino con la publicación, por Kajiya, en 1986 de la rendering equation, que puede encontrarse en un manual especializado

Trazado de Rayos

El trazado de rayos computa la interacción de la luz desde un punto de vista determinado y es particularmente adecuado para superficies reflectantes. Puede utilizarse como propiedad específica de un determinado material.



 Radiosidad

Está basado en principios generales que se pueden encontrar en un manual general sobre rendering. En el estadio inicial la escena consta de dos tipos de objetos: objetos que emiten luz y objetos que reciben luz. A partir de aquí, en una primera vuelta, se computa la luz que recibe cada objeto o, en una aproximación más exacta, cada parte de un objeto, según una subdivisión cuya densidad puede precisarse en sucesivas aproximaciones. Cada una de estas partes, según su grado de reflexividad, su orientación y su distancia con respecto a las fuentes de luz original, se convertirá, en una segunda vuelta, en un nuevo emisor de energía lumínica, una fuente de luz secundaria que iluminará a su vez a los objetos que le rodean.

Casi todos los modelos de iluminación necesitan conocer la normal de cada superficie para calcular su color.

 El primero, llamado método de Gouraud, efectúa una interpolación a partir de los colores calculados por los vértices del polígono, en los que se conoce la normal. El segundo llamado método de Pong, interpola la normal en el punto en estudio a partir de las normales en los vértices, calculando a continuación el color con la ayuda de esta normal según el modelo de iluminación elegido.





Cálculos de iluminación por pixel

Iluminación por fragmento (por pixel) puede ser elaborada en hardware de gráficos moderno como un proceso de post-rasterización por medio de un programa de shader.
Pixel Shader (PS) como un pequeño programa que procesa fragments (algo así como pixelscon más datos) y que se ejecuta en la GPU. Al crear un PS, se crea una función de procesado de fragmentos que manipula datos de fragmentos.

Frecuentemente necesitan datos del VS, llegando incluso a veces a ser “conducidos” por éste. Por ejemplo, para calcular una iluminación por pixel, el PS necesita la orientación del triángulo, la orientación del vector de luz y en algunos casos la orientación del vector de vista.



Alto Acabado

Sombreado Constante o plano. Un cálculo para todo el polígono. Obtenemos una intensidad  que aplicamos a un conjunto de puntos de un objeto (p.ej. todo un triángulo). Aceleramos el proceso de síntesis.  Correcto si se verifica: Fuente de luz en el infinito. Observador en el infinito. El polígono representa una superficie plana real del objeto que se modela y no es una aproximación de un objeto curvo.

 Sombreado Constante o Plano

     Obtenemos una intensidad que aplicamos a un conjunto de puntos de un objeto            *Aceleramos el proceso de síntesis
           *Correcto si se verifica.
           * Fuente de luz en el infinito
           *Observador en el infinito



Un cálculo para todo el polígono

Obtenemos una intensidad  que aplicamos a un conjunto de puntos de un objeto (p.ej. todo un triángulo)

Aceleramos el proceso de síntesis
 Correcto si se verifica
Fuente de luz en el infinito
Observador en el infinito
El polígono representa una superficie plana real del objeto que se modela y no es una aproximación de un objeto curvo.



•    Interpolación de Intensidades (Gouraud)

      Se basa en la interpolación de intensidad o color
      Considera que facetas planas vecinas proceden deaproximar una superficie curva (salvo que se  declare una arista real entre ambas)
      *Elimina en gran medida las discontinuidades de iluminación
      * Es sencilla, pero produce peores resultados en objetos con brillos especulares que el método      de Phong
      *Implementado en OpenGL




Calcula normales al polígono

La iluminación cte. no produce buenos resultados en superficies curvas (aprox. por
facetas planas).

Evaluar la ecuación de iluminación en cada punto de una superficie genérica es muy costoso. Posible solución: aproximar mediante facetas planas e interpolar dentro de cada  polígono. Hay que evitar producir una apariencia “faceteada” (bandas de Mach; respuesta del ojo humano).

Sombreado de Phong

• Se basa en la interpolación de la dirección de la normal, calculada de la misma forma que antes.
• Igual que en Gouraud, se interpola a lo largo de cada línea de barrido, entre los puntos inicial y final, interpolados a su vez de los valores de los vértices de la arista.
• Captura mejor los brillos especulares en el medio de facetas planas (Gouraud los puede omitir).
Produce mejores resultados, a un coste computacional mayor (hay que incrementar la dirección de la normal en tres direcciones, normalizarla y calcular la ecuación de sombreado encada punto)
• Si el coeficiente de reflexión especular es pequeño, los resultados no difieren tanto (se pueden combinar objetos sombreados por ambos métodos en una escena).



Ray Tracing

En muchas formas, ray tracing es una extensión al enfoque de rendering con un modelo de iluminación local. Está basado en la observación previa que, de los rayos de luz saliendo de una fuente, los únicos que contribuyen a la imagen son aquellos que entran el lente de la cámara sintética y pasan por el centro de proyección.

Buffer de Profundidad.

El Z-Buffer se basa en que al generar la posición de un punto en la pantalla la computadora reserve una zona de memoria especial, llamada Z-Buffer, información relacionada con la profundidad del punto que ocupa en la escena representada. Cuando el ordenador representa un nuevo punto consulta el Z-Buffer del píxel que corresponde en pantalla. Si el valor que ya existe en el píxel es mayor que el que posee el nuevo punto, el sistema asume que este último es el visible y lo sustituye en la memoria del Z- Buffer.

Buffer Stencil.

Stencill Buffer es una memoria intermedia que analiza y actualiza píxeles (con sus operaciones) junto con “depth buffer” o buffer de profundidad. Añade planos de bits adicionales para cada píxel además de los bits de color y profundidad.
Stencil buffer es similar al buffer de profundidad en que los dos son colección de planos de bit que no se pueden mostrar. Del mismo modo que el buffer de profundidad asocia a cada píxel de la ventana un valor de profundidad, el stencil buffer asocia su propio valor a cada píxel mostrado. Cuando el buffer de profundidad esta activado los valores de profundidad son usados para aceptar o rechazar fragmentos, del mismo modo los valores de Stencil buffer son usados para aceptar o rechazar fragmentos.

 Fuentes de Luz

La luz puede dejar una superficie mediante dos procesos fundamentales:
*  Emisión propia
* Reflexión
Normalmente se piensa en una fuente de luz como un objeto que emite luz solo mediante fuentes de energía internas, sin embargo, una fuente de luz, como un foco, puede reflejar alguna luz incidente a esta del ambiente. Este aspecto no será tomado en cuenta en los modelos más sencillos.

Fuentes de Luz Distantes

La mayoría de los cálculos de sombreado requieren la dirección de un punto sobre la superficie a la fuente de luz. Según se mueve a lo largo de la superficie, se debe recomputar este vector para calcular la intensidad en cada punto, una computación que es una parte significativa del cálculo del sombreado. Sin embargo, si la fuente de luz está lejos de la superficie, el vector no cambiará mucho según se mueve de un punto a otro, al igual que la luz del sol da en todos los objetos cercanos entre si con el mismo ángulo.



Fuentes de Color

No solamente las fuentes de luz emiten diferentes cantidades de luz en diferentes frecuencias, pero también sus propiedades direccionales varían con la frecuencia. Por lo tanto, un modelos físicamente correcto puede ser muy complejo. Para la mayoría de las aplicaciones, se puede modelar fuentes de luz en base a tres componentes primarios, RGB, y puede usar cada uno de los tres colores fuentes para obtener el componente de color correspondiente que un observador humano vería.



Luz Ambiente

La luz ambiente ilumina por igual todas las zonas en sombra para simular el efecto de interacción entre objetos que hace que las partes en sombra de los objetos queden parcialmente iluminadas.

En algunos cuartos, las luces se diseñan y ubican para proveer iluminación uniforme en el cuarto. Tal iluminación se logra mediante fuentes grandes con difusores cuyo propósito es esparcir la luz en todas las direcciones. Se puede crear una simulación precisa de tal iluminación, modelando todas las fuentes distribuidas, y luego integrando la iluminación de estas fuentes en cada punto de una superficie reflectora. Hacer tal modelo y generar la escena sería un tarea formidable para un sistema gráfico, especialmente si se desea ejecución en tiempo real. De manera alternativa, se puede ver el efecto deseado de las fuentes: lograr un nivel de luz uniforme en el cuarto. Esta iluminación uniforme se llama luz ambiente. Si se sigue este segundo enfoque, se puede postular una intensidad ambiente en cada punto del ambiente. Por lo tanto, iluminación ambiente se caracteriza por una intensidad Ia, que es idéntica en cada punto de la escena.

Spotlights (direccionales)

Los spotlights se caracterizan por un rango delgado de ángulos por los cuales se emite luz. Se puede construir un spotlight sencillo de una fuente de punto limitando los ángulos de donde la luz de la fuente se puede ver. Se puede usar un cono cuyo ápice está en ps, apuntando en la dirección ls, y cuyo ancho está determinado por el ángulo θ.




Intensidad Completa

La intensidad completa exclusivamente para efectos de iluminación es la siguiente:


No hay comentarios:

Publicar un comentario